An Adaptive Controller for Photovoltaic Emulator using Artificial Neural Network
نویسندگان
چکیده
The photovoltaic (PV) emulator is a nonlinear power supply that features the similar characteristic of the PV module. However, the nonlinear characteristic of the PV module causes instability of the PV emulator output. The conventional solution is to operate the PV emulator in the overdamped condition which results in a poor dynamic performance. This drawback is solved by manipulating the proportional and integral gains of the proportional-integral (PI) controller. In this paper, the artificial neural network is used in the adaptive PI controller to maintain a stable and fast dynamic response of the PV emulator. This has been simulated with varied output resistance and irradiance. By comparing the proposed control strategy with the conventional method during start-up response of the photovoltaic emulator, the dynamic performance of the output current has shown an improvement of up to 80 % faster than the conventional method.
منابع مشابه
Maximum Power Point Tracking of the Photovoltaic System Based on Adaptive Fuzzy-Neural Method
The aim of this paper was to present an optimized method in order to use maximum capacity of the photovoltaic panels. In this regard, we presented a method for the maximum power point tracking in the photovoltaic systems by using the neural networks and adaptive controller. In the proposed system, we estimated an error by using neural network. If this error is lower than the allowable systems e...
متن کاملDesign of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...
متن کاملThe Dynamic Performance of Photovoltaic Supplied DC Motor Fed from DC-DC Converter And Controlled by Neural Networks
This paper presents an adaptive neural network controller (ANNC) that is used to control the speed of a separately excited dc motor deriving a centrifugal pump load and fed from photovoltaic (PV) generator through dc-dc buckboost converter. The controller is also used to track the maximum power point (MPP) of the PV generator by controlling the converter duty ratio. Such kind of controllers mus...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کامل